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RAPID COMMUNICATION
Exploring biomarkers of MAPK pathway
co-expression in lung adenocarcinoma and
their functions based on machine learning
algorithms and single-cell analysis
Nowadays, although the treatment and diagnostic ap-
proaches have been improved, lung adenocarcinoma (LUAD)
is still the leading cause of cancer-related death in the world
with overall survival of less than five years1. Diagnosis of
LUAD in the early stage is still a challenge, resulting from
that early symptoms are not obvious2, which leads to the
fact that most patients eventually die from cancer pro-
gression and chemotherapy resistance. LUAD is reported to
be associated with the MAPK pathway, however, the mech-
anism at the cellular and genetic levels has not been clearly
elucidated. Therefore, functional exploration of LUAD- and
MAPK pathway-related genes is essential for understanding
the pathogenesis of LUAD and exploring therapeutic mea-
sures. Figure S1 illustrates the flowchart of this study.

First, to identify potential biomarkers for this disease, the
GEO (http://www.ncbi.nlm.nih.gov/geo/) database was
systematically searched and consequently, the microarray
data of GSE116959 were identified and downloaded, involving
57 LUAD samples and 11 normal controls. Next, software R
(version 4.2.2, https://www.r-project.org/) and the “limma”
package were used to perform the significance analysis of
differentially expressed genes (DEGs) between LUAD samples
and normal samples, and then 731 genes with adjusted P-
value< 0.05 and |Log2 (fold change)|> 1were considered as
DEGs. These DEGs were presented in a volcano plot (Fig. S2A)
and a heat map of the top 50 DEGs was plotted (Fig. S2B).

A gene co-expression network was constructed using the
“WGCNA” package in R software and 1747 MAPK pathway
co-expressed genes from GSE116959 were obtained. In
WGCNA3, the scale-free fit index was set to 0.9 to respec-
tively obtain a minimum soft threshold of 6 for constructing
the scale-free networks (Fig. S2C). The minimum number of
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genes in the modules is set to 50, and 26 modules were
obtained (Fig. S2D). The MEbrown module in LUAD samples
showed a strong correlation with both LUAD and MAPK
pathway (Fig. S2E). Ultimately, we took intersections of
MEbrown module genes and DEGs to generate 413 targets
associated with both LUAD and MAPK pathway (Fig. S2F).
These 413 genes were imported into the String database
(https://cn.string-db.org) to obtain the protein-protein
interaction network composed of 211 nodes and 5538 edges
and this network was visualized through Cytoscape 3.7.2
software4 (Fig. S3A). Then 26 genes with “degree � 10” in
the protein-protein interaction network were selected for
survival analysis showing that seven genes (GNAI1, ITGB4,
KRT8, PDGFB, PECAM1, PIK3R1, and YWHAZ) with high or
low expression had a statistically significant effect on the
survival time (Figs. S3BeH).

LASSO analysis yielded seven candidate biomarkers with
the model in l analysis accurately predicting LUAD
when l Z 7 (Fig. 1A). Meanwhile, five genes with “Mean-
DecreaseGini” > 2 were selected from random forest
analysis (Fig. 1B). Finally, the results of both algorithms
were combined to conclude that KRT8, PDGFB, PECAM1,
PIK3R1, and YWHAZ were potential biomarkers for LUAD
(Fig. 1C), which might contribute to future research in this
domain. Data of receiver operating characteristic analyses
obtained from the original dataset GSE116959 (area under
the receiver operating characteristic curve was 0.936,
0.938, 0.989, 0.941, and 0.869, respectively) and validated
in the TCGA database (area under the receiver operating
characteristic curve was 0.884, 0.871, 0.995, 0.897, and
0.920, respectively) were demonstrated in Figure S4A and
B.

The single-cell RNA sequencing data were obtained
from 6109 cells from the two LUAD samples (W1 and W2) of
GSE146100. Next, we normalized the data and selected
behalf of KeAi Communications Co., Ltd. This is an open access
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http://www.ncbi.nlm.nih.gov/geo/
https://www.r-project.org/
https://cn.string-db.org
http://crossmark.crossref.org/dialog/?doi=10.1016/j.gendis.2024.101222&domain=pdf
www.sciencedirect.com/science/journal/23523042
http://www.keaipublishing.com/en/journals/genes-diseases
https://doi.org/10.1016/j.gendis.2024.101222
https://doi.org/10.1016/j.gendis.2024.101222
http://creativecommons.org/licenses/by/4.0/


Figure 1 Identification of pot ential biomarkers for lung adenocarcinoma and functional analysis of immune-related genes. (A)
LASSO regression model. (B) The random forest model (left) and the seven genes in terms of importance (random forest model)
(right). (C) The intersection of the results of the two machine learning algorithms. (D) Visualization of cells after removal of batch
effects. (E) Cell subcluster identification using singleR. (F) Expression of potential biomarkers in different cell types. (G) Sub-
populations of T cells identified by marker genes. (H) Expression of potential biomarkers in different types of T cells. (I) The
Monocle 2 trajectory plot showing the dynamics of T cell subclusters. (J) Four potential biomarkers varied significantly along the
pseudotime (qval <0.1). (K) Heatmap of correlation in 21 types of immune cells (naive B cells were eliminated due to the absence
of infiltration). The red represented a positive correlation, while the blue represented a negative correlation. The darker color
indicated a stronger association. (L) Box plot for immune cell infiltration analysis. The blue represented the LUAD group and the
green represented the control group. ns, no significant; LUAD, lung adenocarcinoma. (M) TF-mRNA network. The red circles
represented mRNAs and the blue squares represented transcription factors. (N) Pan-cancer analysis of PIK3R1 and YWHAZ
expression in tumors and normal tissues (above: PIK3R1; below: YWHAZ). (O) Pan-cancer analysis of PIK3R1 and YWHAZ expression
and immune cell infiltration (left: PIK3R1; right: YWHAZ). ns, no significant; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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the top 2000 highly variable genes (Fig. S5A), used the PCA
method and the Harmony package for dimensionality
reduction and removal of batch effects (Fig. 1D) and
divided the cells into 15 clusters (Fig. S5B). After anno-
tating the cells using the SingleR package, cells were
divided into seven subclusters, namely B cells, epithelial
cells, macrophages, monocytes, natural killer cells,
smooth muscle cells, and T cells. Then, we analyzed the
expression of potential biomarkers KRT8, PDGFB, PECAM1,
PIK3R1, and YWHAZ in them (Fig. 1E). The results showed
that PECAM1 was more highly expressed in monocytes,
macrophages, and smooth muscle cells, PIK3R1 in T cells,
KRT8 in epithelial cells, and YWHAZ in lymphocytes
(Fig. 1F).
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T cell subcluster annotation was performed and T cells
selected from the W1 samples were classified into three
types via recognized marker genes5 (Fig. S5D), namely
cytotoxic T cells, CD4 T cells, and CD3-CD4- T cells (Fig.
S5C, 1G). Figure 1H demonstrates the differential expres-
sion of potential biomarkers in the three types of T cells,
with PIK3R1 being more highly expressed in cytotoxic T cells
and YWHAZ being more highly expressed in CD3-CD4- T cells
on average. The dimensionality of T cells was reduced
based on highly variable genes (Fig. S5E) and the trajec-
tories of T cell distribution with pseudotime were visualized
(Fig. 1I). The trajectory analysis yielded four crucial time
nodes, by which the T cells were divided into nine cell
states (Fig. S5F). We found that the expression of PIK3R1
and YWHAZ was significantly higher than other marker
genes in the three types of T cells, and with the change of
cell states, these two genes also showed significant
changes, especially PIK3R1 (Fig. S5G). In addition, the
expression of PIK3R1 and PECAM1 gradually increased with
T cell trajectory, and the expression of YWHAZ and PDGFB
was elevated in the middle to late stages of T cell trajec-
tory (Fig. 1J).

In our study, we estimated the proportion of 22 immune
cells in 57 LUAD samples and 11 control samples with the
CIBERSORT algorithm (Fig. S6A) and analyzed the correlation
of immune cell infiltration in the tissues (Fig. 1K). Then,
immune cell infiltration in LUAD tissues and control samples
were compared in Figure 1L. The results showed that there
were differences in the proportions of many types of im-
mune cells. Due to the high expression of PIK3R1 and YWHAZ
in lymphocytes, we focused on the immunological functions
of these two genes. Correlation analysis of PIK3R1 and
YWHAZ expression showed a significant correlation
(R Z �0.2, P Z 3.9E-06) (Fig. S6B). The NetworkAnalyst
platform (https://www.networkanalyst.ca) was used to
construct the TF-mRNA network, which revealed that there
are many common transcription factors between PIK3R1 and
YWHAZ, explaining why these two genes are expressed in
association (Fig. 1M).

We performed a pan-cancer analysis of PIK3R1 and
YWHAZ which were statistically analyzed and visualized
with R software based on data from the UCSC database
(Fig. 1N), showing that PIK3R1 was significantly down-
regulated in 15 types of tumors, such as bladder urothelial
carcinoma and breast invasive carcinoma, and significantly
up-regulated in pheochromocytoma and paraganglioma.
YWHAZ was significantly up-regulated in 15 types of tumors,
such as breast invasive carcinoma and stomach adenocar-
cinoma, and significantly down-regulated in two types of
tumors. Based on the TIMER platform, PIK3R1 has the
strongest association with thyroid carcinoma, and notably,
YWHAZ also correlated strongly with thyroid carcinoma in
immune cell infiltration (Fig. 1O).

In the current study, five potential biomarkers for LUAD
were identified and validated, and that these genes were
strongly associated with the survival time of the patients.
Focusing on the expression characterization and immuno-
logical functions of PIK3R1 and YWHAZ, we found that
PIK3R1 and YWHAZ play a non-negligible role in the matu-
ration of T cells, a role that may also be present in a variety
of cancers.
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